\qquad
\qquad
Unit 3 - Transforming Graphs of Functions - Practice Test

1. The function $y=f(x)$ has domain $-9 \leq x \leq 5$ and range $-7 \leq y \leq 11$. What are the domain and range of $y+4=f(x+2)$?
2. Here is the graph of $y=f(x)$. On the same grid, sketch the graph of $y=-f(x)$.

3. Here is the graph of $y=f(x)$. On the same grid, sketch the graph of $y=-\frac{1}{2} f(2 x)$. State the domain and range of each function.

\qquad Practice Test

Date: \qquad
4. Determine the equation of the function $y=\frac{(x-2)^{3}}{x-4}$ after a vertical compression by a factor of $\frac{1}{2}$, a horizontal compression by a factor of $\frac{1}{2}$, a reflection in the y-axis, and a reflection in the x-axis.
5. Describe how the graph of $y-3=\frac{1}{2} f(-2(x-3))$ is related to the graph of $y=f(x)$.
6. Here is the graph of $y=f(x)$. The graph of $y=f(x)$ is transformed by: a vertical compression by a factor of $\frac{1}{2}$, a horizontal compression by a factor of $\frac{1}{2}$, no reflection, and a translation of 3 units left and 2 units down. Write an equation of the image graph in terms of the function f. Sketch the image graph, then state its domain and range.

7. The graph of $y=|x|$ is vertically compressed by a factor of $\frac{1}{3}$, horizontally compressed by a factor of $\frac{1}{3}$, reflected in the y-axis, then translated 3 units left and 4 units down. Write an equation of the image graph in terms of x.
\qquad
Practice Test
Date: \qquad
8. The graph of $y=g(x)$ is the image of the graph of $y=f(x)$ after a combination of transformations. Write an equation for the transformations.

9. Determine whether these functions are inverses of each other.
$y=\frac{7 x+6}{2}$
$y=\frac{2 x+6}{7}$
10. Here is the graph of $y=f(x)$. On the same grid, sketch the graph of its inverse.

Name: \qquad
12. Determine two ways to restrict the domain of $y=-x^{2}+5$ so that its inverse is a function. Write the equation of the inverse each time. Use a graph to illustrate each way. State the domain of the restricted $f(x)$, and state the domain of the inverse function.

